REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT

Takakazu TAKIZUKA
Japan Atomic Energy Research Institute

The 1st COE-INES International Symposium, INES-1
October 31 – November 4, 2004
Keio Plaza Hotel, Tokyo, Japan

HTTR Project

Reactor Technology

HTTR Operation and Testing
Achievement of 950°C (April 2004)
Safety Demonstration Tests

GTHTR Plant Design and Gas Turbine Technology R&D
Design of GTHTR300 (electricity, 850°C) and
GTHTR300C (cogeneration, 950°C)
Tests of Control, Magnetic Bearing, and System Control

Hydrogen Production Technology

System Integration
Simulation Tests, Isolation Valve Test

IS Process

Bench-scale Tests Pilot-scale Test (from 2005) HTTR-IS (from 2010)

HTTR

High Temperature Engineering Test Reactor

Graphite-moderated, helium gas-cooled reactor

Thermal power: 30 MW

Coolant outlet temperature:

850°C in the rated operation

950°C in the high-temperature test operation

The first high-temperature gas-cooled reactor in Japan Designed, constructed, and operated by JAERI Located at the JAERI Oarai site

Purposes:

to establish HTR technology

to demonstrate HTR safety operation and inherent safety characteristics

to demonstrate nuclear heat utilization

to irradiate HTR fuels and materials

Major Technical R&D Facilities

VHTRC (Very High Temperature Reactor Critical Assembly) Reactor Physics 1985-1995

OGL-1 (Oarai Gas Loop-1) 1000°C helium loop in JMTR Fuel Irradiation 1985-1995

HENDEL (Helium Engineering Demonstration Loop)
Thermal Hydraulics, etc. 1982-1995

Material Test Machine

High temperature fatigue test machine for super alloy in helium gas. 1981-

HTTR Milestones

1991/03	Construction started
1996/10	Functional test started
1998/11	First criticality
1999/09	Power-up test started
2001/12	Full-power operation (single loaded) at 850°C
2002/02	Full-power operation (parallel loaded) at 850°C
2003/03	Safety demonstration test started
2004/04	High temperature operation (single loaded) at 950°C
2004/06	High temperature operation (parallel loaded) at 950°C

Cutaway View of RPV and Core of HTTR

Stand pipe Permanent reflector block Replaceable reflector block Core restraint mechanism Fuel element Hot plenum block Support post Lower plenum block Carbon block Bottom block Support plate Core support grid Auxiliary coolant outlet pipe Main coolant outlet pipe

RPV height/diameter: 13.2/5.5 m

Core height/diameter: 2.9/2.3 m

Fuel columns: 30, Control columns: 7

Fuel Element: pin-in-block type

height/across flats: 580/360 mm

Fuel: TRISO coated UO₂ (6% enrichment)

Control rods: 16 pairs

Major Specifications of HTTR

Thermal Power

30 MW

Outlet Coolant Temperature

850/950°C

Inlet Coolant Temperature

395°C

Fuel

Low Enriched UO₂ (6wt%)

Fuel Element Type

Prismatic Block

Fuel Loading

Off-load, 1 Batch

Core Diameter

2.3 m

Core Height

2.9 m

Average Core Power Density

2.5 W/m³

Flow Direction

Downward Flow

Number of Main Loop

Coolant Flow Rate

10.2 kg/s (950°C Operation)

Effective Core Coolant Flow

88%

Primary Coolant Pressure

4.0 MPa

Cooling System of HTTR

Loop operation modes:

Single loaded operation

cooler

Auxiliary Cooling System

Main Cooling System

AHX: Auxiliary heat exchanger

GC: Gas circulator

Water pump

IHX: Intermediate heat exchanger

PPWC: Primary pressurized water cooler SPWC: Secondary pressurized water cooler

High-temperature Test Operation at 950°C

Performance tests at 950°C were completed, and JAERI received an operation permit for the high-temperature test operation (950°C operation) of the HTTR from the government.

Safety Demonstration Test

to demonstrate characteristics of HTRs to obtain transient data for code validation to establish safety design and evaluation technology of HTRs

Reactivity Insertion Test

Increase of reactivity due to withdrawal of the central pair of control rods

Coolant Flow Reduction Test

Reduction of primary coolant flow due to trip of primary helium gas circulators

Fission Product Confinement

Failure fraction of the first-loading fuel of the HTTR

Through-coatings failure fraction: 2×10^{-6} (Design criteria: 1.5 x 10⁻⁴)

SiC-failure fraction: 8 x 10⁻⁵

(Design criteria: 1.5 x 10⁻³)

Gas Turbine High Temperature Reactor, GTHTR300

GTHTR300 Project (2001-2007)

Thermal power: 600 MW

Electric power: ~280 MW

Coolant outlet temperature: 850°C

Design of GTHTR300 plant

(Reactor, Power conversion system, Safety, Maintenance, Cost)

R&D on helium gas-turbine system

(Compressor, Magnetic Bearing, Operation & Control, Recuperator)

Purposes:

to establish feasible design of commercial power plant to establish power conversion system technology

prototype plant in 2010's, commercial plant in 2020's technology base for developing Advanced GTHTR and Cogeneration HTR

GTHTR300 Design Features

Modular plant

Fully inherent and passive reactor safety

Improved pin-in-block type fuel element

High burnup and long refueling interval

Conventional steel reactor pressure vessel

Non-intercooled Brayton cycle

Horizontal single shaft turbo-machine

Magnetic bearings to support turbo-machine rotor

Separate containment of turbo-machine and heat exchangers

GTHTR300 Plant Layout

GTHTR300 Reactor Design

Thermal power

Core shape

Power density

Coolant temperature

Core effective flow

Core pressure drop

600 MWt

Annular

5.4 MW/m³

inlet: 587°C

outlet: 850°C

82%

58 kPa

Fuel temperature 1379°C (max.)

Fuel element Pin-in-block prism

Enrichment 14%

Burnup 120 GWd/t

Cycle length 730 days (2 batch)

Pressure vessel SA533 (Mn-Mo) steel

Horizontal cross section of reactor core

GTHTR300 Fuel Design

Design Criteria

Maximum fuel temperature 1400°C (normal)

1600°C (accident)

Average burnup 120 GWd/t

BP hole

Fuel Compact

Coated Fuel Particle Dimension

UO₂ kernel diameter 0.55 mm

Coating layer thickness

Buffer layer 0.14 mm

Inner PyC layer 0.025 mm

SiC layer 0.045 mm

Outer PyC layer 0.025 mm

Coated fuel particle diameter 1.01 mm

Fuel Element

A-A Cross Section

1050 mm

Power Conversion System Design

Helium gas working fluid, Closed-cycle

Direct cycle (no IHX)

Non-intercooled, regenerative Brayton cycle

600 MWt, 850°C, 3.5-7 MPa

Separation of PCV/HXV

Horizontal, single-shaft GT

Turbo-machine design

Turbine: 6 stage, 850°C inlet temperature, 1.87 pressure ratio, 92.8% efficiency

Compressor: 20 stage, 28°C inlet temperature, 2.0 pressure ratio, 90.5% efficiency

Generator: 3-phase AC synchronous generator, helium-cooled

Electric power: 275 MW, Power conversion efficiency: 45.8%

Cost Estimation

Construction Cost per Unit (n-th plant, 4 unit/plant)

Reactor $$\pm 17,080M$ Power Conversion $$\pm 14,011M$ Auxiliary $$\pm 6,723M$ Electric, Instrumentation & Control $$\pm 5,780M$ Buildings $$\pm 11,071M$

Total ¥54,665M (¥0.199M/kW)

Electricity Cost (3% discount rate, 40 years operation)

	80% availability	90% availability
Capital *1	¥1.57/kWh	¥1.47/kWh
Operation & Maintenance	¥1.11/kWh	¥0.99/kWh
Fuel *2	¥1.46/kWh	¥1.46/kWh
Total	¥4.14/kWh	¥3.84/kWh

^{*1:} including decommissioning cost, *2: including reprocessing cost Electricity cost from LWR: ¥5.3/kWh (FEPC 2001)

Ongoing R&D on Power Conversion System

Scaled model tests to demonstrate key technologies for the GTHTR power conversion system

Compressor Aerodynamic Performance Test (2003-2004)

to verify aerodynamic performance and design method

Magnetic Bearing Development Test (2005-2007)

to develop technology of magnetic bearing supported rotor system to verify rotor design

Gas-Turbine System Operation and Control Test (2007-2010)

to demonstrate operability and controllability of closed-cycle gas-turbine system

Compressor Aerodynamic Performance Test

Features of helium gas compressor

high boss ratio, large number of stages, nearly parallel flow passage high Reynolds number, low Mach number

Compressor model 1/3-scale, 4-stage, 10800 rpm

Helium gas loop ~1 MPa

Air Gas Turbine vs. Helium Gas Turbine

Open-Cycle Industrial Gas Turbine (π = 20, θ_{TI} = 1450°C) Mitsubishi M701G 334 MWe, 39.5%

Closed-Cycle Helium Gas Turbine (π = 2, θ_{TI} = 850°C) GTHTR300 275 MWe, 45.8%

Compressor Model and Helium Gas Loop

Major Design Parameters of Compressor Model

Flow rate 12.2 kg/s

Inlet temperature 30°C

Inlet pressure 0.883MPa

Pressure ratio 1.156

Base diameter 500 mm

Tip diameter (1st stage) 568 mm

Boss ratio (1st stage) 0.88

Number of stages 4

Rotational speed 10800 rpm

Peripheral speed of rotor blade 321 m/s

Number of rotor/stator blades (1st stage) 72/94

Rotor/stator blade chord length (1st stage) 28.6/35 mm

Rotor/stator blade height (1st stage) 34/33.7 mm

Aerodynamic Performance Results

The first series of aerodynamic performance tests was completed in March 2003.

Performance results showed good agreement with the prediction.

Extrapolation to the full scale compressor condition estimated an efficiency over 90%.

Pressure ratio at the rated rotational speed

Blade section efficiency at the rated rotational speed

Turbo-machine Rotor System

Single shaft, Two span (Turbo-compressor rotor and Generator rotor), Flexible coupling connection, Magnetic bearing support

Rotational speed: 3600 rpm, Length: 12 + 13 m, Mass 46,100 + 66,500 kg

Magnetic bearings need no liquid lubricants, completely eliminating the possibility of lubricant ingress into the primary system.

Rotor Dynamics

Magnetic bearings have lower load capacity and lower stiffness than oil bearings.

The stiffness of the magnetic bearings is around 10⁹ N/m.

The rotors operate above bending mode critical speeds

Critical speed map for the turbo-compressor rotor

Critical speed map for the generator rotor

Turbo-machine Rotor Model Test

Testing of magnetic bearing performance, unbalance response, stability and auxiliary bearing reliability.

Development of advanced control method

Rotor model 1/3-scale (1/10 in mass), Variable speed (rated 3600 rpm)

Gas-turbine System Operation and Control Test

Test objectives;

to establish an operation and control method of closedcycle gas-turbine systems, to accumulate system transient data, and to develop and verify a plant dynamics analysis code.

Operation modes;

full power steady-state normal operation, partial power steady-state normal operation, start-up, shutdown load change, loss of load, and emergency shutdown

Schematic Flow Diagram of the Test Facility

Integrated scaled model of GTHTR300 power conversion system

Flow diagram of the test facility (reference design)

Working fluid: Helium Flow rate: 1.7 kg/s

Turbine Model

1/7-scale, 2-stage axial turbine (reference design)

Flow rate	1.66 kg/s
Inlet pressure	1.00 MPa
Inlet temperature	641°C
Pressure ratio	1.24
Rotational speed	23400 rpm
Number of stages	2
Inlet outer diameter	336 mm
Inlet hub diameter	281 mm

27.5 mm

Blade height

Very High Temperature Reactor (VHTR)

Very high temperature reactor with 950°C reactor outlet temperature enables;

Electricity generation at a higher efficiency around 50%,

Hydrogen production by thermo-chemical processes, and

Cogeneration of electricity and hydrogen.

HTTR and GTHTR300 offer technology base for VHTR

Preliminary design of the 950°C reactor core Thermodynamic cycle of the 950°C power conversion system VHTR plant for cogeneration (GTHTR300C)

950°C Reactor Preliminary Design

950°C core design with little modifications Power distribution flattened Fuel element design unchanged Core internals design unchanged

	950°C core	850°C core
Thermal Power	600 MW	600 MW
Power density	5.4 MW/m ³	5.4 MW/m ³
Core outlet temperature	950°C	850°C
Core inlet temperature	587°C	587°C
Fuel temperature (max.)	1377°C	1379°C
Burnup (average)	118 GWd/t	120 GWd/t
Cycle length	550 days (2 batch)	730 days (2 batch)
Refueling bach	2	2
CFP packing fraction	21.8%	29.0%
Enrichment	5 (11.0-16.4%)	1 (14%)
BP diameter	1	2
BP concentration	2	7

Gas Turbine Cycle for 950°C

With 950°C core, 50% Power conversion efficiency is attainable without any significant design change to GTHTR300 power conversion system.

	950°C PCS	850°C PCS
Core outlet temperature	950°C	850°C
Core inlet temperature	663°C	587°C
Pressure ratio	2.0	2.0
Turbine efficiency	94%	93%
Compressor efficiency	91.5%	90.5%
Recuperator effectiveness	95%	96%
Turbine cooling flow	1.5%	1%
Power conversion efficiency	50%	45.8%

Cogeneration Plant GTHTR300C

Least design changes from that of GTHTR300 plant Minimum additional R&D

Topping with hydrogen production process on gas-turbine cycle

Design Features of GTHTR300C

Based on the GTHTR300 plant design

950°C core outlet coolant temperature

950-850°C for hydrogen production

850°C< for electricity generation

5 MPa coolant pressure

Helical tube-and-shell type IHX

Turbo-compressor design unchanged

Recuperator and precooler design unchanged

Comparison of Cogeneration Plant with Power Plant

	GTHTR300C	GTHTR300
	cogeneration plant	power plant
Reactor thermal power [MWt]	600	600
Core power density [W/cc]	5.4	5.4
Core outlet temperature [°C]	950	850
Core inlet temperature [°C]	594	587
Core coolant pressure [MPa]	5.1	6.9
Core coolant flow rate [kg/s]	324	439
GT cycle pressure ratio [-]	2.0	2.0
Power conversion efficiency [%]	46.7	45.8
Electricity production [MWe]	202	275

Intermediate Heat Exchanger (IHX)

Helical tube-and-shell type He/He IHX is operating at 950°C in HTTR

Hastelloy-XR (helium ~1000°C)

High temperature structural design guideline

Licensing and Operating experiences

IHX design for the GTHTR300C follows that of the HTTR

Type: Helical tube-and shell

Material: Hastelloy-XR

Tube sizing: 31.75 mm OD \times 24.75 mm ID

Comparison of GTHTR300C IHX with HTTR IHX

GTHTR300C	HTTR
170	10
950/850	950/389
5.02	4.06
323.8	3.4
500/900	237/869
5.15	4.21
81.0	3.0
154	113
972	244
5.20/2.60	1.30/4.87
	170 950/850 5.02 323.8 500/900 5.15 81.0 154 972

Conceptual Layout of GTHTR300C

Concluding Remarks

JAERI is carrying out the HTR technology development under the HTTR project.

The HTTR successfully achieved full power at the outlet coolant temperature of 950°C.

Design of the GTHTR300 power plant and R&D on a gas-turbine system are underway with a goal of near-term commercial deployment.

The GTHTR300 design will demonstrate competitive economy and high degree of safety. The R&D on helium gas turbines will establish technology of high-efficiency power conversion.

A concept of a cogeneration plant GTHTR300C is proposed to meet the future demand for hydrogen and electricity.